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INTRODUCTION 

The search for the most convenient technique for linear equations has been going on at the right 

time, given the significant role systems of linear equations play in various fields of study. A system 

of  𝑚 linear equations in 𝑛 variables is a set of 𝑚 equations, each of which is linear in the same 𝑛 

variables.. Various methods have been evolved to solve linear equations, but the best method is 

yet to be proposed for solving a system of linear equations (Jamil, 2012).  

Different mathematicians propose various methods based on efficiency and accuracy. 

However, speed is essential for solving linear equations where the computation volume is so large.           
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ABSTRACT 

The matrix inversion technique is one of the tools for solving a system of linear equations. An 

alternative approach to computing the inverse of square matrices is proposed here using 

Cramer's rule in solving a linear equation system. The inverse is obtained as a coefficient of a 

catalytic column vector of a supposed solution of a linear system of equation 𝑨𝑿 = 𝒃. This 

inverse is used to obtain a unique solution of systems of linear equations of various sizes of 

unknown with practical illustrations shown. 
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Solutions to system of linear equation can be obtained either by direct or indirect approach. The 

direct approach employs the techniques of Linear Algebra to find the values of the variables which 

satisfies the sets of equation. This method attempts to calculate an exact solution in a finite number 

of operations. On the other hand, the indirect method uses Numerical techniques to approximate 

the solutions based on certain methods of iterations. Many researchers have investigated the 

solutions of systems of linear equations through direct and indirect methods (Dass & Rama, 2010; 

Dafchahi, 2010). 

Haoyu et al (2021) studied three direct methods for solving systems of linear equation. In 

their work, advantages and disadvantages of each of variable elimination, Gaussian elimination 

and Cramer’s rule were presented. Suriya et al (2015) compared two direct methods, Gaussian 

elimination and Gauss Jordan method. Their work analyzed the performance of each method on 

the basis of execution time. Kalambi (2008) studied three main iterative methods for solving linear 

equation: These are Successive-Over Relaxation, the Gauss-Seidel and the Jacobi technique. 

Systems of linear equations exist in many areas, either directly in modelling physical situations or 

indirectly in the numerical solutions of other mathematical models. The application of systems of 

linear equations occurs in virtually all areas of Physical, Biological and Social sciences. Linear 

systems are at the heart of numerical solutions to optimization problems, systems of non-linear 

equations, partial differential equations, etc. 

Given a system of linear equations 

𝑎11𝑥1 𝑎12𝑥2 … 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 𝑎22𝑥2 … 𝑎2𝑛𝑥𝑛 = 𝑏2
⋮

𝑎𝑛1𝑥1

⋮
𝑎𝑛2𝑥2

…
⋯

⋮ ⋮ ⋮
𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

 

Where 𝐴 = (

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮

𝑎𝑛1

⋮
𝑎𝑛2

…
…

⋮
𝑎𝑛𝑛

) , 𝑿 = (

𝑥1
𝑥2
⋮
𝑥𝑛

)𝑎𝑛𝑑 𝒃 = (

𝑏1
𝑏2
⋮
𝑏𝑛

) 

𝑨 is the matrix of coefficient, 𝑿 is the matrix of unknown, and 𝒃 is the matrix of the constant 

associated with each of the sets in the linear system. 
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The system can be represented as  

𝐴𝑋 = 𝑏           (1) 

The solution to (1) has played a significant role in a wide area of mathematics, obtained either by 

analytical techniques or numerical procedure. 

We consider an aspect of the analytical technique, the matrix inversion technique and propose a 

new approach to obtaining the solution to the system of linear equations given as (1).  

MAIN RESULT 

The proposed solution is based on the procedure below: 

Given the system 𝐴𝑋 = 𝑏 where 𝐴−1, the inverse of the matrix A exists, multiplying (1) by 𝐴−1, 

we have 𝐴−1𝐴𝑋 = 𝐴−1𝑏(by associativity of matrix multiplication) 

𝐼𝑋 = 𝐴−1𝑏 

𝑋 = 𝐴−1𝑏           (2)  

Assuming that system (1) has a unique solution, we aim to obtain 𝐴−1 and subsequently use it to 

compute 𝑋, as shown in (2), where 𝑋 is the matrix of unknowns in the system (1). 

Several methods have been developed for the inversion of matrices, as discussed in Tian et al. 

(2014), Smith and Powell (2011), Thirumurugan (2014), Jeremy et al. (1991) and John (2019). 

Existing methods mainly rely on the use of cofactors and adjoints of the matrix A. These methods 

place a high demand on cost of computation, significantly when the number of unknowns 

increases. The researchers intend to adopt a procedure proposed in John (2019) to obtain the 

inverse of 𝐴 given in (1). 
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Proposition 1 Cramer’s rule 

Let 𝐴𝑋 = 𝑏 be a linear system of equations defined as (i) with unknown variables 𝑥1, 𝑥2, … 𝑥𝑛and 

𝑎11, 𝑎12, … 𝑎𝑛d denotes the entries of the coefficient matrix 𝐴. Letdet(𝐴) ≠ 0, be the determinant 

of A, then the solution  𝑥1, 𝑥2, … 𝑥𝑛  of (1) is given by 𝑥𝑖 =
det(𝐴𝑖)

det(𝐴)
for 𝑖 = 1,2,3, … 𝑛. 

Proof 

Given a system of linear equations: 

𝑎11𝑥1 𝑎12𝑥2 … 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 𝑎22𝑥2 … 𝑎2𝑛𝑥𝑛 = 𝑏2
⋮

𝑎𝑛1𝑥1

⋮
𝑎𝑛2𝑥2

…
⋯

⋮ ⋮ ⋮
𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

 

If we write the system as 𝐴𝑋 = 𝑏, then, provided det(𝐴) ≠ 0, the solution can be written as: 

𝑋 = 𝐴−1𝑏 =
1

det(𝐴)
(𝑎𝑑𝑗𝐴)𝑏 =

1

det(𝐴)
𝐶𝑇𝑏  

where 𝐶𝑇 is the transpose of the matrix of cofactors of A.  

If 𝑋 = (𝑥1, 𝑥2, … 𝑥𝑛)
𝑇 and 𝑏 = (𝑏1, 𝑏2, … 𝑏𝑛)

𝑇, the 𝑖𝑡ℎ element of 𝑋 is given by                                               

  𝑥𝑖 =
1

det(𝐴)
(𝑐1𝑖𝑏1) + (𝑐2𝑖𝑏2) + ⋯+ (𝑐𝑛𝑖𝑏𝑛) for 𝑖 = 1,2,3, … 𝑛.                                                      

This is simply the expansion of det(𝐴𝑖) in terms of the elements of its 𝑖𝑡ℎ column, where 𝐴𝑖 is the 

matrix obtained from 𝐴 by replacing the elements of the 𝑖𝑡ℎ column with the elements of 𝑏. 

This has established that 𝑥𝑖 =
det(𝐴𝑖)

det(𝐴)
 for 𝑖 = 1,2,3, … 𝑛 

 

Proposition 2      (John, 2019) 

Let 𝑥𝑘 (𝑘 = 1,2…𝑛) be the solution of (1) obtained by Crammer’s rule, then  

(i) 𝑥𝑘 = ∑ 𝐷𝑗𝑘𝑏𝑗
𝑛
𝑗=1  
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(ii) 𝑥 = ∆𝑏 where ∆= (

𝐷11 𝐷12 ⋯ 𝐷1𝑛
𝐷21 𝐷22 ⋯ 𝐷2𝑛

⋮
𝐷𝑛1

⋮
𝐷𝑛2

⋮ ⋮
⋯ 𝐷𝑛𝑛

) 

Proof (See John 2019)  

Proposition 3       (John, 2019) 

The matrix D in Proposition 2 is the inverse of A. 

Proof 

𝑥 = (

𝑥1
𝑥2
⋮
𝑥𝑛

) be the solution of (1) then,  

𝑥 = 𝐴−1𝑏 = (

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮

𝑎𝑛1

⋮
𝑎𝑛2

…
…

⋮
𝑎𝑛𝑛

)

−1

(

𝑏1
𝑏2
⋮
𝑏𝑛

) = (

𝐷11 𝐷12 ⋯ 𝐷1𝑛
𝐷21 𝐷22 ⋯ 𝐷2𝑛

⋮
𝐷𝑛1

⋮
𝐷𝑛2

⋮ ⋮
⋯ 𝐷𝑛𝑛

)(

𝑏1
𝑏2
⋮
𝑏𝑛

) = ∆𝑏 

Therefore, (

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮

𝑎𝑛1

⋮
𝑎𝑛2

…
…

⋮
𝑎𝑛𝑛

)

−1

= (

𝐷11 𝐷12 ⋯ 𝐷1𝑛
𝐷21 𝐷22 ⋯ 𝐷2𝑛

⋮
𝐷𝑛1

⋮
𝐷𝑛2

⋮ ⋮
⋯ 𝐷𝑛𝑛

) , 𝑖. 𝑒. 𝐴−1 = ∆ 

 

Proposition 4      (Larson & Falvo, 2009)) 

The solution of a system of linear equation 𝐴𝑋 = 𝑏 can be obtained as 𝑋 = ∆𝑏  

where ∆= 𝐴−1.  

Proof 

Let  𝐴𝑋 = 𝑏 be a system of linear equations with n-unknown 
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To obtain ∆, let 𝑋 = (

𝑥1
𝑥2
⋮
𝑥𝑛

) 𝑎𝑛𝑑𝑏 = (

𝑏1
𝑏2
⋮
𝑏𝑛

) be column vectors such that the system (1) is 

consistent. Since our interest is to find ∆,  choosing the entries of 𝑏 as unknown constraints does 

not affect the outcome of the computation since 𝑏  is only a factor of 𝐴−1𝑏. 

Multiplying (1) by ∆ yields ∆𝐴𝑋 = ∆𝑏 

But ∆𝐴 = 𝐼, (𝑠𝑖𝑛𝑐𝑒∆= 𝐴−1) 

𝐼𝑋 = ∆𝑏 

𝑋 = ∆𝑏. hence the proof. 

APPLICATION 

In this section, we compute ∆  using the procedure given by (John, 2019) and obtain the solution 

of (1) for various unknowns where 𝐴 is any non-singular square matrix with |𝐴| ≠ 0. 

Example 1 

Find the solution of the system of linear equations given as 
3𝑥1 + 5𝑥2 = 1
𝑥1 − 4𝑥2 = 6

 

Solution 

Let 𝑋 = (
𝑥1
𝑥2
) and 𝑏 = (

𝑏1
𝑏2
), then 𝐴𝑋 = 𝑏𝑔𝑖𝑣𝑒𝑠 (

3 5
1 −4

) (
𝑥1
𝑥2
) = (

𝑏1
𝑏2
) 

𝑥1 =
∆1

∆0
=

|
𝑏1 5
𝑏2 −4

|

|
3 5
1 −4

|
=

−4𝑏1−5𝑏2

−17
, 

𝑥2 =
∆2
∆0

=
|
3 𝑏1
1 𝑏2

|

|
3 5
1 −4

|
=
3𝑏2 − 𝑏1
−17

, 

𝑋 = (
𝑥1
𝑥2
) =

−1

17
(
−4𝑏1 − 5𝑏2
3𝑏2 − 𝑏1

) =
−1

17
(
−4 −5
−1 3

) (
𝑏1
𝑏2
) 
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∴ ∆=
−1

17
(
−4 −5
−1 3

) 

Applying (2) 

𝑋 = ∆𝑏 

𝑋 = (
𝑥1
𝑥2
) =

−1

17
(
−4 −5
−1 3

) (
1
6
) =

−1

17
(
−4 − 30
−1 + 18

) =
−1

17
(
−34
17

) = (
2
−1

) 

Hence, 𝑥1 = 2and𝑥2 = −1. 

Example 2 

Find the solution of the system of the linear equation given as 

4𝑥1 + 2𝑥2 − 𝑥3 = 9
𝑥1 − 𝑥2 + 3𝑥3 = −4

2𝑥1 + 𝑥3 = 1
 

Solution 

The system can be reduced to (
4 2 −1
1
2

−1 3
0 1

)(
𝑥1
𝑥2
𝑥3
) = (

9
−4
1
) 

We proceed to find ∆ the inverse of 𝐴 = (
4 2 −1
1
2

−1 3
0 1

) 

Then, 

𝑥1 =
∆1

∆0
=

|

𝑏1 2 −1
𝑏2
𝑏3

−1 3
0 1

|

|
4 2 −1
1
2

−1 3
0 1

|

=
−𝑏1−2𝑏2+5𝑏3

4
,  

𝑥2 =
∆2
∆0

=

|
4 𝑏1 −1

1
2

𝑏2 3
𝑏3 1

|

|
4 2 −1
1
2

−1 3
0 1

|

=
5𝑏1 + 6𝑏2 − 13𝑏3

4
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𝑥3 =
∆3
∆0

=

|
4 2 𝑏1
1
2

−1 𝑏2
0 𝑏3

|

|
4 2 −1
1
2

−1 3
0 1

|

=
2𝑏1 + 4𝑏2 − 6𝑏3

4
 

𝑋 = (
𝑥1
𝑥2
𝑥3
) =

1

4
(
−1 −2 5
5
2

6 −13
4 −6

)(

𝑏1
𝑏2
𝑏3

), 

∴ ∆=
1

4
(
−1 −2 5
5
2

6 −13
4 −6

) 

Applying (2) 

𝑋 = ∆𝑏 

𝑋 = (
𝑥1
𝑥2
𝑥3
) =

1

4
(
−1 −2 5
5
2

6 −13
4 −6

)(
9
−4
1
) =

1

4
(
−9 + 8 + 5
45 − 24 − 13
18 − 16 − 6

) =
1

4
(
4
8
−4

) = (
1
2
−1

) 

Hence, 𝑥1 = 1, 𝑥2 = 2and𝑥3 = −1. 

Example 3 

Solve the system of the linear equation given as

2𝑥1 + 𝑥2 + 2𝑥3 + 𝑥4 = 6
6𝑥1 − 6𝑥2 + 6𝑥3 + 12𝑥4 = 36
4𝑥1 + 3𝑥2 + 3𝑥3 − 3𝑥4 = −1
2𝑥1 + 2𝑥2 − 𝑥3 + 𝑥4 = 10

 

Solution 

The system can be reduced to (

2 1 2 1
6 −6 6 12
4
2

3
2

3
−1

−3
1

)(

𝑥1
𝑥2
𝑥3
𝑥4

) = (

6
36
−1
10

) 

We proceed to find ∆ the inverse of 𝐴 = (

2 1 2 1
6 −6 6 12
4
2

3
2

3
−1

−3
1

) 
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Then, 

𝑥1 =
∆1

∆0
=

|

𝑏1 1 2 1
𝑏2 −6 6 12
𝑏3
𝑏4

3
2

3
−1

−3
1

|

|

2 1 2 1
6 −6 6 12
4
2

3
2

3
−1

−3
1

|

=
−162𝑏1+27𝑏2+72𝑏3+54𝑏4

234
,  

𝑥2 =
∆2

∆0
=

|

2 𝑏1 2 1
6 𝑏2 6 12

4
2

𝑏3
𝑏4

3
−1

−3
1

|

|

2 1 2 1
6 −6 6 12
4
2

3
2

3
−1

−3
1

|

=
180𝑏1−30𝑏2−54𝑏3+18𝑏4

234
, 

𝑥3 =
∆3

∆0
=

|

2 1 𝑏1 1
6 −6 𝑏2 12

4
2

3
2

𝑏3
𝑏4

−3
1

|

|

2 1 2 1
6 −6 6 12
4
2

3
2

3
−1

−3
1

|

=
138𝑏1−10𝑏2−18𝑏3−72𝑏4

234
, 

𝑥4 =
∆4

∆0
=

|

2 1 2 𝑏1
6 −6 6 𝑏2
4
2

3
2

3
−1

𝑏3
𝑏4

|

|

2 1 2 1
6 −6 6 12
4
2

3
2

3
−1

−3
1

|

=
102𝑏1−4𝑏2−54𝑏3+18𝑏4

234
, 

𝑋 = (

𝑥1
𝑥2
𝑥3
𝑥4

) =
1

234
(

−162 27 72 54
180 −30 −54 18
138
102

−10
−4

−18
−54

−72
18

)(

𝑏1
𝑏2
𝑏3
𝑏4

), 

∴ ∆=
1

234
(

−162 27 72 54
180 −30 −54 18
138
102

−10
−4

−18
−54

−72
18

) 

Applying (2) 

𝑋 = ∆𝑏 
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𝑋 = (

𝑥1
𝑥2
𝑥3
𝑥4

) =
1

234
(

−162 27 72 54
180 −30 −54 18
138
102

−10
−4

−18
−54

−72
18

)(

6
36
−1
10

) =
1

234
(

−972 + 952 − 72 + 540
1080 − 1080 + 54 + 180
828 − 360 + 18 − 720
612 − 144 + 54 + 180

)

=
1

234
(

468
234
−234
702

) = (

2
1
−1
3

) 

Hence, 𝑥1 = 2, 𝑥2 = 1, 𝑥3 = −1 and  𝑥4 = 3 

CONCLUSION 

This paper proposes an efficient approach based on the matrix inversion technique for solving a 

system of linear equations for n-unknown. The techniques are rapid, accessible, efficient, usable, 

and highly accurate. The new method creates opportunities to find other methods based on the 

inversion techniques for solving system of linear equation.  This new approach is applicable to 

solve systems of linear equations of more considerable unknowns such as 5, 6, etc., as presented 

in the second part of the paper (next article). 
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